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The folded antenna may be regarded as the ultimate electromagnetic structure 

because it integrates all three major families of components, that is linear radiators, 

transmission lines and lumped impedances, into a single device.  It should come as no 

surprise, therefore, that it offers the engineer exceptional design freedom compared with 

other antennas. It provides six more independent design variables than a simple linear 

radiator of the same length.  They are:  1- the resistance and 2- the reactance of the base 

load impedance;  3- the resistance and 4- the reactance of the top load impedance; 5- the 

differential mode characteristic impedance; and 6- the common mode current 

transformation ratio.  Precise meanings for each of these will become clear as we develop 

and explore the model of this versatile antenna. Thanks to the additional variables, 

efficient antennas can be designed that are much shorter or longer than the traditional 

quarter-wave monopole or half-wave dipole.   

In practice, extremely compact folded antennas have been fabricated.  This article 

will conclude with a design example that is only 0.107 wavelength, or 38.4 electrical 

degrees, in height. The feasibility of such tiny antennas has obvious attractions at both 

long wavelengths, where available space and materials are primary limiting factors, and 

short wavelengths, where covertness may be highly desirable.  

Folded antennas are acknowledged briefly in many handbooks and text books. 

Until a recent book by the author 
[1]

, however, only a few specialized configurations had 

been thoroughly analyzed with detailed mathematical formulas. Leonhard, Mattuck and 

Pote derived an equivalent circuit to model folded monopoles shorter than a quarter-

wavelength 
[2]

. In their model, the base load impedance is an inductor, and the top load 

impedance is a short circuit. Ronald W. P. King and Charles W. Harrison, Jr. used 

integral equations to model the folded antenna with nonzero top load impedance and a 

short circuit for a base load impedance 
[3]

.  

In this article, we will develop an original mathematical model of the folded 

antenna, with arbitrary impedance loads at both top and base. The model applies to 

antennas both long and short compared with a wavelength. Although it is very general, 

the model is also mathematically simple, consisting chiefly of algebraic formulas.   

Extensive numerical analyses and an arsenal of computer programs are not necessary. 

In particular, some of the questions our model will answer include: 

 

1. What are the antenna input current and input impedance as functions of the 

impedance loads at the top and at the base? 

 

2. What combinations of top and base load impedances result in a useable 

antenna input impedance? 



 

3. What is the frequency response of the folded antenna? 

 

 

 

Formulas for the Current and Voltage on the Antenna 

 
Figure 1 shows the configuration of interest.  The antenna consists of two parallel 

conductors, with equal lengths but not necessarily with equal diameters.  The conductor 

connected to the feed line is called the “fold”.  The other conductor is called the “tower”.  

The latter name probably originates from applications to vertical radiators in the VLF, 

LF, and MF bands.  Our mathematical model will apply to any band, however, from ELF 

through EHF. 

 
Figure 1. The folded antenna provides six more independent design variables than a monopole or 
dipole of the same height. Shown here are the essential geometry and design parameters. Also 
shown are two different modes of current, a common mode and a differential mode.  

 

 

 The fold and the tower are connected by the top load impedance ZT.  At its base, 

the fold is connected to a transceiver with output impedance R0 via a transmission line 

with characteristic impedance equal to R0.  The tower is connected to ground through the 

base load impedance ZB. 



The figure also shows how the folded antenna fundamentally differs from other 

linear radiators. There are two different modes of current, a common (or unbalanced, or 

antenna) mode and a differential (or balanced, or transmission line) mode. Other linear 

antennas do not have a differential mode. The common mode currents on the fold and 

tower are in phase with each other; however, they do not necessarily have the same 

amplitude. The relative amplitudes are described by the current transformation ratio ν. 

The superposition of common mode and differential mode currents provides great 

flexibility and control over the input impedance of the folded antenna. As a result, 

radiators ranging from very short to very long, compared with a wavelength, are feasible.  

The loading impedances ZT and ZB may be regarded as mixers for the two modes.  As our 

mathematical model will show, the proper combination of these loads can provide 

useable antenna impedances for just about any wavelength.  

Both current modes are the superposition of forward and reflected traveling waves.  The 

common mode current on the tower is: 

 

 

The common mode current on the fold is νIc(z). 

 

The differential mode current is: 

 

 

 

In Equations 1 and 2, the wave number is: 

 

 

Where λ is the wavelength,  f is the frequency and c is the speed of light. 

 

In Equation 1, the amplitude of the forward wave has been arbitrarily set to unity 

without loss of generality. The amplitude Γ of the reflected wave is determined by the 

antenna end effect, discussed in detail by the author in a recent article 
[4]

.  It is readily 

 calculated using the  formula, 

 

 

In Equation 4, Z0c is the common mode characteristic impedance and Zs is the parallel 

combination of the antenna end capacitance and the radiation resistance of a virtual slot 

antenna: 
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In Equation 5, the radiation resistance Rs of the virtual annual slot is 

approximately 112.5 Ω for any antenna radius. The reactance of the end capacitance is: 

 

 

 

In Equation 6, ae is the radius of a single cylinder with the same common mode 

characteristic impedance as the folded antenna..  This can be calculated by equating their 

common mode characteristic impedances.  The result is: 

 

 

 

 

Equation 7 follows from a formula for the common mode characteristic impedance of a 

single cylinder that was derived and discussed by the author in a recent book 
[5]

. Z0c is the 

common mode characteristic impedance of the folded antenna, λ is the wavelength, η is 

the impedance of free space and k’ is the quasi static wave number. 

Traveling waves of voltage also propagate along the folded antenna and these are 

related to the currents by the usual transmission line formulas. The common mode 

voltage is:  

 

 

 

The differential mode voltage is: 

 

 

 

In Equation 8, the factor 1+ν is required because common mode current flows on both 

the tower and the fold. 
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So far, we have uniquely specified all of the variables in the formulas except for 

the complex amplitudes IF and IR in Equation 2. To determine those, we need two 

independent equations, and those are boundary conditions at the two loads. At the base of 

the antenna, Kirchhoff’s voltage law requires that:  

 

 

 

At the top of the antenna, the differential mode voltage and current must satisfy the 

constitutive relation determined by the impedance ZT: 

 

 

If we apply Equations 1, 2, 8 and 9 to Equations 10 and 11, then after some algebra, we 

obtain formulas for the complex amplitudes of the differential mode current. The 

amplitude of the forward traveling wave is: 

 

 

 

 

 

The amplitude of the reflected or reverse traveling wave is: 

 

 

 

 

 

 

In Equations 12 and 13, the forward traveling wave function is: 

 

 

 

The reverse traveling wave function is: 
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Characteristic Impedance and Current Transformation Ratio 

To evaluate the formulas in the previous section for current, we need values for 

the common mode characteristic impedance Z0c, the differential mode characteristic 

impedance Z0d, and the current transformation ratio ν.  These are functions of the detailed 

cross section of the folded antenna.  With careful design of that cross section, they can be 

prescribed over a wide range of values.  Typically, Z0c can range from 200 to 1,200 Ω; 

Z0d can range from 20 to 200 Ω; and ν can range from 0.3 to 3.  These are only typical 

values. Extreme values outside those ranges are also possible. A thorough discussion and 

formulas for the calculation of values for arbitrary cross sections made from multiple 

conductors can be found in a recent book by the author 
[6]

. Here, we will summarize the 

results for a simple cross section for completeness of our present discussion.  

For a fold of radius a separated from a tower of radius b by a distance s, the 

common mode characteristic impedance is 
[7]

: 

 

 

 

 

 

The differential mode characteristic impedance is 
[8]

: 

 

 

 

The current transformation ratio is 
[9]

: 

 

 

 

In Equation 16, k’ is the quasi static wave number 
[10]

: 
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Antenna Input Current and Input Impedance 

At the input terminal to the folded antenna, the current is:  

 

 

Using Equations 1 and 2, Equation 20 becomes: 

 

 

 

In Equations 20 and 21, the factor ν is required because the antenna input terminal is at 

the base of the fold, not the tower. 

 

The voltage at the input terminal is: 

 

 

From Equations 21 and 22, the input impedance is: 

 

 

 

Equation 23 does not include any contribution from radiation resistance. We will derive a 

formula for that shortly.  If the impedance loads ZB or ZT include any resistance, however, 

then that will show up in Zin.  In any case, the input reactance to the antenna is simply the 

imaginary part of Zin: 

 

 

 

 

 

 

We can obtain a formula for the input resistance Rin by first using the current distribution 

described by Equation 1 to determine the radiated electric field 
[11]

: 
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In Equation 25, the vertical radiation characteristic is: 

 

 

 

Eqn. 26 can be evaluated exactly in terms of simple functions 
[12]

; however, with modern 

desktop computers, it is quickly evaluated numerically as well. The integrand need only 

include the common mode currents on the fold and tower. The differential mode current 

does not contribute significantly to the radiated field because it is balanced. 

 

From the radiated electric field, the radiated power density, or Poynting vector, is 

readily obtained:  

 

 

and also the total radiated power: 

 

 

 

For vertical or z-directed wires, using Equations 25 to 27, Equation 28 becomes: 

 

 

 

 

Finally, the input radiation resistance is: 
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Equation 21 is used to compute Iin in Equation 30. 

Our mathematical model is now ready to help us explore how the folded antenna 

performs as a function of its many independent design variables.  Figures 2 and 3 show 

the antenna input impedance as a function of frequency, for several different values of 

common mode characteristic impedance.  For a simple monopole of the same length, the 

quarter-wave resonant frequency would be 82 MHz.  For the folded antenna, however, 

we observe useable input resistances at much lower frequencies. Further, the input 

reactance is positive, or inductive, and this is easily tuned out with a practical capacitor.   

So, short folded antennas are inherently easier to match than short monopoles or dipoles.  

 
 
Figure 2. The antenna input resistance was computed for a 3-foot length, a differential 
characteristic impedance of 120 Ω, short circuits on both load impedances and a current 
transformation ratio of unity. Three distinct resonances are observed in the vicinity of a quarter-
wavelength. 

 



 
Figure 3. Antenna input reactance was computed for the same variables as figure 2. Three zero-
crossings or resonances are observed in the vicinity of a quarter-wavelength. 

 

Figure 2 also provides a good sanity check for our mathematical model. It is seen 

that, for all values of Z0c,, the resistance at 82 MHz converges to about four times the 

input resistance of a resonant monopole (36 Ω)    This is in exact agreement with the 

theory of simple folded antennas, first published by van Roberts 
[13]

. The figures also 

reveal some performance unique to folded antennas. While a simple monopole has a 

single resonance near a quarter-wavelength, the folded antenna has three. One of those 

extra resonances is below the quarter-wavelength, and the other is higher. The additional 

resonances appear more distinct as Z0c increases. 

Figures 4 and 5 show the antenna input impedance as a function of frequency, for 

several different values of current transformation ratio. Based upon our formulas, 

especially Equation 21 for input current, the results are not surprising. As the current 

transformation ratio decreases, so does the input current. As a direct result, input 

impedance increases. 



 
Figure 4. Antenna input resistance was computed for a 3-foot length, a common mode 
characteristic impedance of 600 Ω, a differential mode characteristic impedance of 120 Ω and 
short circuits for both load impedances. It is seen that resistance increases with decreasing 
current transformation ratio. 

 

 
Figure 5. Antenna input reactance was computed for the same variables as in figure 4. It is seen 
that the resonances decrease in frequency with increasing current transformation ratio. 



 

Examining especially Figures 2 and 4 for input resistance, it would seem that there is 

a “dead zone”, or interval of near-zero input resistance, in the vicinity of a half-

wavelength. This is an erroneous conclusion, however, because we have not yet begun to 

examine the benefits of varying the load impedances ZB and ZT. 

 

 

Benefits of Base and Top Load Impedances 

Each of the load impedances provides two independent design variables, a 

resistance and a reactance. Careful selection of these allows us to greatly extend the 

frequency performance of the folded antenna.  

Figures 6 and 7 show the antenna impedance as a function of frequency, for several 

different values of base reactance XB, that is, for ZB = jXB.  It is seen that the spectrum for 

which there are useable input resistances has been extended well into the “dead zone” 

described in the above section, and below the quarter-wave resonance, into the realm of 

extremely short antennas. 

 
 
Figure 6. Antenna input resistance was computed for a 3-foot length, common mode 
characteristic impedance of 600 Ω, differential mode characteristic impedance of 120 Ω, a current 
transformation ratio of unity and a short circuit for the top load impedance. The base load 
impedance clearly influences frequency response. 



 
Figure 7. Antenna input reactance was computed for the same variables as in figure 6. The base 
load impedance clearly influences the zero crossings of the reactance or resonances of the 
antenna. 
 

 
Figure 8. Color contour plots allow a more thorough investigation of the effect of base load 
reactance. Optimal (dark green) regions are observed at very long wavelengths compared with 
the length of the antenna. 



 

A color contour plot, such as Figure 8, is a more complete way to examine the 

effect of base reactance on input resistance. Compared with the conventional xy plots, 

such as the previous two figures, we are less likely to skip over useful design choices.  

Both base reactance XB and frequency f are varied continuously and simultaneously. For 

this selection of colors, dark green denotes resistances from 45 to 55Ω. Light green 

denotes 25 to 75 Ω.  Yellow denotes 75 to 150 Ω. Red denotes 150 to 300Ω. Gray 

denotes greater than 300 Ω.  It is seen that there are highly desirable dark green regions 

for frequencies as low as about 35 MHz, or 0.107 wavelength. 

 

Figure 9 is a similar color contour plot. The difference is that the top load reactance 

XT is varied instead of XB. Definite effects are seen, although they seem to be less 

extensive than for XB.  When both reactances are simultaneously varied, however, the 

synergistic design benefit is definitely apparent, as we will see in the following example. 

 

 
Figure 9. Color contour plots of input resistance similarly allow a more thorough investigation of 
the effect of top load reactance. The antenna length is 3 feet, only 0.107 wavelenth at 35 MHz. 
Common and differential mode characteristic impedances are 600 and 120 Ω, respectively. 
Current transformation ratio is unity. 

 

 

Design Example:  A Very Small Antenna 

 
One of the unique advantages of folded antennas is the capability for extreme 

compactness compared with other linear radiators. In the previous section, we saw that 



useable resistances were possible for a 3-foot antenna at 35 MHz.  At that frequency, the 

antenna is only 0.107 wavelength, or 38.4 electrical degrees.  

Although our example is in the VHF band, the results scale readily to other bands 

both higher and lower. The linear dimensions decrease in direct proportion to the 

wavelength.  This example also applies to 3.5 GHz and a 9.1 millimeter antenna, or to 

350 kHz and a 300 foot antenna. Figure 10 is a color contour plot for which the two 

continuous variables are the two load reactances XB and XT. The frequency is fixed at 35 

MHz, and the antenna length is fixed at 3 feet.  It is seen that there is a dark green region, 

corresponding to an input resistance of 45 to 55 Ω, in the vicinity of XB = 795 Ω.  

 
Figure 10. Color contour plots of input resistance shoe what happens when both base and top 
load reactances are varied simultaneously at 35 MHz. An optimal (dark green) region is observed 
in the vicinity of XB = 795 Ω. Without this type of plot, what are the chances of discovering this 
region? 

  

Let’s see what happens when we hold XB fixed and vary XT. To that end, Figure 11 

shows the input resistance and reactance as a function of the top load reactance XT, when 

XB is fixed at 795 Ω.  It is seen that the input reactance Xin changes sign twice.  The input 

resistance Rin plunges at one of those zero crossings but remains flat and over 100 ohms 

at the other.  The design choice obviously favors the latter. 



 
 
Figure 11. Antenna input resistance and reactance as a function of XT when

 
XB is held fixed at 

795 Ω. The input reactance changes sign twice. The zero-crossings for XT = -77 Ω appears to 
correspond to an optimal resistance 

 

As a confirmation of the above design choice, Figure 12 shows the standing wave 

ratio or SWR as a function of top load reactance XT. As expected, it dips to a highly 

acceptable level for XT  = -77 ohms. 

 



 
Figure 12. The standing wave ratio or SWR was computed for the same variables as figure 11. 
As expected, for XB = 795 Ω and XT = -77 Ω, the SWR is just about minimal. 

 

 

 
Comparison with Other Theories and Actual Installations 

 

As discussed in the Introduction, no mathematical model as general as the one 

presented here is available in the literature; however, it is possible to compare our model 

with some special cases that have been published.  One of these is a formula derived by 

the eminent antenna analysts King and Harrison 
[14]

.  For a monopole with short circuits 

for loads at both top and base, their formula is: 

 

 

In Equation 31, Zd is the input impedance of a dipole of length 2h.  The differential mode 

characteristic impedance Z0d and the wave number k have the same meaning as we have 

used throughout this article. The factor of ½ outside the brackets is the transformation 

from the input impedance of a dipole to that of a monopole over an infinite ground plane. 
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Figure 13 compares input resistance computed using our mathematical model with that 

calculated using Equation 31, for a 3-foot antenna with short circuits at both top and base. 

Overall, the agreement between the two theories seems excellent.  There are slight 

disagreements in the vicinity of the peak resonances; however, over most of the interval, 

the two curves lie exactly on top of one another.  A similar plot was obtained for input 

reactance. 

 

 
Figure 13. The input resistance calculated using our mathematical model (red) and the formula 
derived by King and Harrison (blue) agree very closely. In this example, the antenna is 3 feet long 
with short circuits loads at both top and base. 

 

Further confirmation of our model comes from repeated experience in the field.  

The author’s chief mentor concerning folded antennas was the late John H. Mullaney, 

(1920-1994), who installed hundreds of them around the world. He reported that there 

were multiple resonances around a quarter wavelength, not just one as in the case of the 

monopole. He further observed that the lowest resonance was “really steep”. No one was 

ever able to explain these cumulative observations before; however, they are 

demonstrated quite readily by our model, and visible in Figures 2 and 3. 

 

 

Conclusions 

In this article, we developed a comprehensive yet mathematically simple model of 

one of the most versatile antennas available. The folded antenna combines the best 

features of linear radiators, transmission lines and lumped impedances into a single 

device. Compared with a simple monopole or dipole antenna of the same length, the 

folded antenna provides the engineer with six more independent design variables.  



Thanks to these added variables, folded antennas are practical for lengths ranging from 

extremely short to extremely long, compared with a wavelength. Simple algebraic 

formulas were derived for antenna current, antenna voltage, input reactance, and input 

resistance. Color contour plots show that optimal (such as 50 Ω) resistances are 

obtainable for many combinations of design variables. With careful use of color contour 

plots, very compact folded antennas can be designed. We explored an example in which 

the antenna was 0.107 wavelength, 38.4 electrical degrees. The formulas agree almost 

exactly with the rigorous theory of King and Harrison.  Further, they explain the multiple 

resonances in the vicinity of a quarter wavelength that have been observed during actual 

installation of these antennas around the world. It is hoped that these new, practical 

formulas will promote innovative designs for an antenna that was first described in the 

open literature in 1947, but that still has much unexplored potential. 
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